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Objective and Approach
Objective

Produce a computationally efficient method 
for estimating bathymetric uncertainty of 
Naval Oceanographic Office DBDB-V* data

Approach

• Adapt Monte Carlo (MC) technique to 
Bayesian network (BN)
– Lower computation costs and inputs

• Design and train network 
– Implement MC on sample sets

• Examine differences between MC & BN
– Does this approach appear valid?

*Digital Bathymetry Database – Variable Resolution

Figure : Fused bathymetry and uncertainty surfaces for the 
North Canyon Experiment (NCEX) data set. Units along the 
axis are pixels with each pixel being a 50 meter grid. 



3 of 15

Background and Motivation
State-of-the-art for uncertainty estimation of historic bathymetry data is 
based on Monte Carlo (MC) procedures by Jakobbson, et. al. (2002)*
• Navigation error, bottom slope, & sensor accuracy -> depth uncertainty.

• Requires original soundings data - very computationally intensive

• Not pragmatic to use on all soundings data held by NAVOCEANO. 

Fig. 3 from Jakobbson et al. (2002)
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Solution Strategy - Bayes Net Adaptation

CPT

Vertical Error
(Sensor)

Horiz.Error
(Navigation)

Bottom Slope

PDF for σ (% depth)

Generated from
MC runs

Strategy: Use Monte Carlo technique on 
sample data to train a Bayesian network

• Exploit the similarity of how these errors propagate

Impact: Reduce input data & computation 
requirements.
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Bayesian Network Training and Use

68.7th percentile
is in this bin.

Mean + 1σ

• Train BN w/ Monte Carlo technique
1. Tabulate applicable horizontal errors

2. Monte Carlo procedure on error categories

3. 2D histogram of possible uncertainties for CPT

4. Repeat for each training area (Atlantic, Mariana 
Trench and Hawaii areas discussed here)

• Example BN to right
1. Logarithmic scaling; one significant digit.

2. Uncertainty estimate: pick 68.7th quantile

Navigation Mode Accuracy Navigation Mode Accuracy 
GPS/SINS (3 or more 
Satellites)

10-15 m NAVSAT/Single Range 
LORAN/ SINS

250 m

GPS/DR (3 or more 
Satellites)

10-15 m NAVSAT/ SINS 250 m

NAVSAT/Range 
Range LORAN/SINS

150 m NAVSAT/ Single Range 
LORAN /DR

250 m

NAVSAT/Range 
Range LORAN/DR

167 m NAVSAT/DR 400 m

NAVSAT/Hyperbolic 
LORAN/SINS

185 m LORAN/ SINS
LORAN/ DR

463 m

NAVSAT/Hyperbolic 
LORAN/DR

222 m Satellite Altimetry 7000 m

Table I: Horizontal Error Categories
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Training Area 1 – Mariana Trench

Small red box – training for 10-460 meter errors
Large pink box – training for 7000 meter errors
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Training Area 1, 220m horizontal error
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Training Area 1, 460m horizontal error
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Training Area 2 – Atlantic Cont. Slope
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Training Area 2, 220m horizontal error
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Training Area 2, 460m horizontal error
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Training Areas 3 & 4

Small red box – training for 10-460 meter errors
Large pink box – training for 7000 meter errors

Training Area 3 - Atlantic Basin Training Area 4 – Hawaiian Islands
(altimetry only)
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Ensemble CPT Results

Training Area 1 – Mariana Trench Training Area 2 – Atlantic Slope

220m error

460m error

220m error

460m error
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Tabulated Differences 
Differences as % depth between Monte Carlo and DUES estimators

self ensemble
Horizontal Error median st. dev. 95th C.I. median st. dev. 95th C.I.

1. Mariana Trench
10m        0.04 + 0.04 -0.01 0.03 [-.068, .046] 0.02 0.03 [-.02, .09]
220m      0.09 + 0.1 -0.02 0.08 [-.18, .15] < 0.01 0.09 [-.09, .21]
460m 0.2 + 0.2 -0.06 0.12 [-.35, .16] 0.06 0.2 [-.22, .36]
7 km             2 + 6 0.3 3.5 [-7.5, 4.5] 0.2 3.6 [-3.6, 8.3]

2. Atlantic Slope
10m        0.02 + 0.02 -0.003 0.016 [-.021, .042] -0.03 0.02 [-.07, .01]
220m     0.09 + 0.05 -0.03 0.05 [-0.09, 0.09] -0.09 0.07 [-.24, .03]
460m     0.17 + 0.07 -0.03 0.07 [-0.15, 0.13] -0.2 0.09 [-.30, .03]
7 km        0.2 + 6.7 -0.01 3.7 [-1.2, 1.2] -0.1 3.6 [-1.0, 1.4]

3. Atlantic Basin
10m       0.02 + 0.08 > -0.01 0.05 [-0.13, 0.04] 0.01 0.05 [-.10, .06]
220m      0.1 + 1.0 -0.01 0.4 [-0.50, 0.77] 0.01 0.4 [-.2, 1.0]
460m      0.2 + 1.8 -0.03 0.8 [-1.4, 1.2] < 0.01 0.7 [-.7, 1.7]
7 km       0.4 + 8.0 -0.1 4.7 [-8.7, 4.2] 0.1 4.7 [-8.6, 4.4]

4. Hawaii - Altimetry only
7 km       0.4 + 3.8 -0.1 2.2 [-3.3, 2.6] -0.1 2.5 [-5.6, 1.5]

Worst Case σ’s
10m   - 0.05%
220m - 0.2%
460m - 0.8%
7 km  - 4.7%
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Summary and Conclusion
Summary

Produced a computationally efficient method for 
estimating bathymetric uncertainty for DBDB-V

Approach

• Adapted Monte Carlo (MC) technique to 
Bayesian network (BN)
– BN implementation is an extension of the Monte 

Carlo technique of Jakobsson et al. 

• Designed & trained network using MC approach
– BN was then interfaced inside a larger 

automated system to estimate uncertainty

• Examined differences between MC & BN est.
– Differences were at worst ~8/10th of one percent 

of water depth when soundings data were used

Conclusion

BN approach appears preliminarily to be a valid 
approach to bathymetric uncertainty estimation. 

– Further validation required for flatter areas and 
with more data sets.

process Bayesian net

Questions?

68.7th percentile
is in this bin.

Mean + 1σ
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Extra Slides
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DUES
DBDB-NV Uncertainty Expert 

System
(Bayesian network)

Navigation
Database

Survey date and 
platform

DBDB-V
Database

Bathymetry

2-D gradient
calculator

Bathymetric
uncertainty

estimate

database data

process Bayesian net

Legend

Navigation & sensor 
error convertor

Navigation
error

Vertical
error

Bottom
gradient

DBDB-NV

BAG
populator

User query
to databases

Real Bit
Flags

Operational Concept
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DUES Algorithm training

DUES
DBDB-NV Uncertainty 

Estimation System
(Bayesian network)

Horizontal and 
vertical error

populator

OAML Bathy Fusion 
with MC shell

2-D gradient
calculator

Conditional 
probability table 
(CPT) generator

CPT

Bathymetry 
data sets

Bathymetry with sets 
of horizontal and 

vertical errors

Bottom 
gradient

Sets of 
bathymetry with 
uncertainty for 

sets of horizontal 
errors

Monte Carlo simulator

dataprocess Bayesian net

Legend
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Gradient = 0.1 m/m
Horizontal Errors = 10 m & 220 m

68.7th percentile
is in this bin. 68.7th percentile

is in this bin.

Mean + 1σ Mean + 1σ
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Gradient = 0.1 m/m
Horizontal Errors = 460 m & 7000 m

68.7th percentile
is in this bin.

68.7th percentile
is in this bin.

Mean + 1σ Mean + 1σ
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Gradient = 1.0 m/m
Horizontal Errors = 10 m & 220 m

68.7th percentile
is in this bin. 68.7th percentile

is in this bin.

Mean + 1σ Mean + 1σ
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Gradient = 1.0 m/m
Horizontal Errors = 460 m & 7000 m

68.7th percentile
is in this bin.

68.7th percentile
is in this bin.

Mean + 1σ Mean + 1σ

Programmed as
slope in degrees
instead of gradient

Programmed as
slope in degrees
instead of gradient
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Bayesian Net Adaptation

CPT

Vertical Error
(Sensor)

Horiz.Error
(Navigation)

Bottom Slope

PDF for σ (% depth)

Generated from
MC runs
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Bayesian Network Overview
• BN Strategy: Exploit the similarity 

of how these errors propagate
• Use BN to estimate errors for other 

data with similar systems and bottom 
slopes

• BN reduces input data and 
computation requirements 

• Uses probabilistic estimates and rules 
of statistics for computations. 

• Conditional probabilities link parent 
nodes (A, B, C, etc.) to child node Y 

• Conditional probability tables (CPT’s) 
store conditional probabilities

• Parent nodes are histograms of their 
variables

• Child histogram is a weighted sum of 
the conditional probabilities. 

Nodes A, B, and C are parents of node Y, meaning that A, B
and C collectively cause effect Y. 
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• A, B, C only have one bin populated

• A, B, C only have multiple bins populated
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Monte Carlo Training

OAML Bathy Fusion

(Adapted from Jakobbson et al. (2002) JGR, VolB12, art2358)

•Uncertainty assessed from Monte Carlo simulations

1. Perturb sounding positions “n” times
• Gaussian distribution of perturbed positions
• Horizontal/navigation positioning error = 1σ of Gaussian perturbation

2. Obtain standard deviation of the “n" bathymetry layers

3. Change horizontal error to next navigation error and repeat 1 & 2

4. Create CPT of standard deviations with horizontal error and slope using bivariate 
histogram at end of simulations. 
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