Uncertainty and bathymetric DEM

Developing an Open Source QGIS solution

T. Schmitt (SHOM)
C. Penard (NOVELTIS)
J. Waddle (NOVELTIS)
✓ Generally limited information (if none) is conveyed concerning uncertainty of the DEM (global or at the cell level)
✓ Multiple sources of data needed to build a DEM
✓ Multiple acquisition and processing methods (Lead line, Single beam echosounder, multibeam, lidar, …)
✓ Multiple interpolation methods generate continuous surface
✓ Bathymetric grid used for multiple usages (hydrodynamic, geosciences, navigation)
✓ **Objective**: Implement methods and tools to generate an estimate of the uncertainty

Objective: Implement methods and tools to generate an estimate of the uncertainty
Methodology

Data selection/processing
- Characterization of individual dataset (metadata)
- Interpolation
 - Interpolated Bathymetric Surface
 - Estimation of the uncertainty (MC and/or BN)
- Residue
- Geostatistical analysis
 - Krigging of the "micro-morphology"
 - Krigging "error"
- Combining components
 - Produced DEM and its uncertainty layer

Bathymetry

Matthew Poti12, Brian Kinlan1,2,3, and Charles Menza1

GEBCO Science Day 2015
Each sounding dataset in SHOM BDB is characterized by a set of metadata.
- POSACC, SOUACC, TECSOU, QUALOT (IHO defined) are used to estimate the “error budget” of each individual dataset.
- Missing one of them, estimated by the date period (assuming precision is technology driven).
- Hypothesis of a radial distribution around the sounding.
On the effect of random errors in grided bathymetric compilations

Martin Jakobsson, Brian Calder, and Larry Mayer
Center for Coastal and Ocean Mapping and Joint Hydrographic Center, University of New Hampshire, Durham, New Hampshire, USA

Received 18 October 2001; revised 8 January 2002; accepted 17 January 2002; published 20 December 2002.

Bathymetric datasets

Randomly modified bathymetric datasets

Interpolation

Realization

Meta-data + Uncertainty propagation model

N times

Variogramme applied on the residue

GEOSTATISTICS

✓ Variogramme applied on the residue

EXPRESSING THE UNCERTAINTY

✓ 95 percentile – 5 percentile
✓ Any other expression
Results 1/3
Results 2/3
Results 3/3
Exemple of GUI
Viewing / Exploiting uncertainty
CONCLUSIONS
✓ An attempt to provide a tool to build bathymetric DEM with its corresponding layer of uncertainty
✓ Methodology built on “sound” mathematical background and adapted hydrographic assumptions
✓ Characterization of the source data relates to international standards (IHO)
✓ Nearly independent of the interpolation technique
✓ Open source solution / flexible coding

FUTURE WORK
✓ Improve a-priori characterization of the source data (e.g. vertical precision as a function of depth)
✓ Improve Bayesian network learning and results
✓ Improve performances (parallelization)
✓ Propose better ways to present the results
✓ BAG implementation