

Improvement in Global Marine Gravity from Retracked CryoSat Altimetry

Emmanuel Garcia, David Sandwell, Walter H. F. Smith

- Global bathymetry is based on ship soundings and <u>satellite</u> gravity
- Existing gravity models are derived from old Geosat and ERS-1 data
- Expecting factor of 2-4 improvement in gravity accuracy from <u>CryoSat</u>, Envisat, and Jason-1
- Examples of gravity improvements based on 14 months of CryoSat data

Modern Seafloor Mapping Tools

Sparse soundings + Dense altimetry = Global bathymetry

Improving Predicted Bathymetry Requires Better Gravity

Evolution of marine gravity models as seen over the Galapagos Triple Junction

Uncharted Seamounts > 3 km tall

Predicted depths are based on altimeterderived gravity and sparse ship soundings.

Seamounts

Achieving 1 mGal Gravity Accuracy

- Improved range precision -- A factor of 2 or more improvement in altimeter range precision, with respect to Geosat and ERS-1, is needed to reduce the noise due to ocean waves.
- Fine cross-track spacing and long mission duration -- A ground track spacing of 6 km or less is required.
- Moderate inclination -- Current non-repeat-orbit altimeter data have high inclination and thus poor accuracy of the E-W slope at the equator.
- **Near-shore tracking** -- For applications near coastlines, the ability to track the ocean surface close to shore is desirable.

The CryoSat Mission

source: ESA

- launched by the European Space Agency in April 2010
- designed to study ice in the polar regions using a <u>multi-</u> mode radar altimeter with different precision capabilities
- operates over the oceans as well!

CryoSat's Modes

- LRM conventional mode used by all previous altimeters.
- **SAR** synthetic aperture radar mode may provide 2-4 times better range precision.
- **SARIN** uses two receiving antennas to also measure cross-track slope over ice.

source: ESA

CryoSat Operating Modes Map

CryoSat Data Acquisition over 14 Months

CryoSat Data Acquisition over 14 Months

Gravity Improvements from CryoSat

Comparisons in the Gulf of Mexico

5 mGal contour interval

Comparisons in the Gulf of Mexico

satellite gravity with CryoSat LRM vs. ship gravity

Wahoo Guyot

CryoSat Data Acquisition over 14 Months

CryoSat LRM Mode vs. SAR Mode

 $D_n(z)$ is a parabolic cylinder function of order n

Additional Improvements in SAR Mode

CryoSat SAR data could possibly be 2X more accurate than Geosat and ERS because the waveform is sharper

Expected Gravity Improvement

Error in north and east components was averaged.

- Expect major improvements in gravity accuracy:
 - 2X in LRM areas
 - 4X in SAR areas
- Predicted bathymetry accuracy is proportional to gravity accuracy.
- Improved gravity will provide new opportunities for investigating
 - detailed tectonics
 - seafloor roughness
- Predicted bathymetry will evolve 3-4 times over the next few years so GEBCO will need a capability for rapid updates.