High resolution geoid from altimetry & bathymetry: requirements for a future mission

The GRAL team: J-Y Royer ^{1,2}, M-F Lalancette ³, G Louis ^{1,2}, M Maia ^{1,2}, D Rouxel ³ & L Géli ⁴

GEBCO Science Day - Sept. 29, 2009 - Oceanopolis, Brest

Predicted bathymetry

Predicted bathymetry

Main requirement
- Well navigated shipborne
bathymetric data

Main advantages

- Uniform coverage
- Global coverage up to 81 latitude

- Main limitations
 - Reflects basement topography
 - Poor at short wavelength
 - 🗋 λ > 20 km
 - · Coastal areas
 - Rough topography areas

- Relies on

- Quality of gravity models
- Transfer function between gravity & bathymetry

Smith & Sandwell, 1997

Predicted vs observed bathymetry

Profile across the mid-Atlantic ridge

Shipborne gravity measurements

Accuracy	Best than 1mGal
Spatial resolution	along track: few meters across tracks: 1km
Data coverage	sparse

Central Atlantic

How to improve gravity models from altimetry

- From altimetry to high-resolution geoid
- Satellite-derived vs shipborne gravity
- Requirements for a new mission
- Proposal for a new mission

From altimetry to gravity

♥ Stack of satellite passes ↓ Mean sea surface geoid

Andersen O.B. & Knudsen P., JGR, 1998

Differentiation along track

Vertical deflection = geoid slope

Sandwell & Smith, JGR, 1997, 2005, 2009

Gravity model improvements

- Retracking raw waveform of Geodetic Mission data
- Improved along track slope-gridding
- Improved geopotential model

Sandwell & Smith, 2009

Shipborne vs "altimetric" gravity

Shipborne vs "altimetric" gravity

Sandwell & Smith, 2009

Shipborne vs "altimetric" gravity

- Current gravity models are limited :
 - $\Box \ \lambda > 25 \text{ km w rms } \sim 7$ mgal on average
 - $\Box \ \lambda > 16 \text{ km w rms } \sim 3 \text{ mgal}$ in some areas
 - Resolution remains poor in coastal and rough areas

- Needed improvements :
 - Uniform data coverage
 - Accuracy close to shipborne data
 - Improved data recovery in coastal areas

Altimetry Mission		Year	Repettive- ness	Me <i>a</i> surement spacing at the Equator	
	GEOSAT	1985-86	drifting	4 km	
and past missions	GEOSAT	1986-90	17 days	164 km	
	TOPEX	1992- 2005	10 days	315 km	
		1992-93+	35 dave	79km	
	ERS-1	1995-96	33 days		
rent		1994-95	168 days	8 km	
Cur	Jason-1	2001-É	10 days	215 km	
	Jason-2	2008-É	TUUdys	315 KM	
ed ns	Cryosat-2	2010	369 days	uncorrelated	
anne ssio	SARAL	2010	35 days	150 km	
Pla mis	Sentinel-3	2011	27 days	100 km	

Needed improvements :

 4% of altimetric data come from non-repeat orbital tracks
 => drifting orbit

Al N	timetry lission	Year	Maximum latitude	
	GEOSAT	1985-86	70	
ons	GLUGAT	1986-90	12	
st missio	TOPEX	1992- 2005	66 🗆	
d pa:		1992-93+		
and	ERS-1	1995-96	82	
rent		1994-95		
Cur	Jason-1	2001-É	66 -	
	Jason-2	2008-É	00	
Planned missions	Cryosat-2	2010	88 🗆	
	SARAL	2010	82	
	Sentinel-3	2011	81□	

- Needed improvements :
 - 4% of altimetric data come from non-repeat orbital tracks
 => drifting orbit
 - Cover polar areas
 => high inclination of orbit

Altimetry Mission		Year	Height RMS accuracy	Slope accuracy	
	GEOSAT	1985-86	13cm	3.2 µrad at 9 km	
ons	GEUSAT	1986-90	6.5 cm	2.2 µrad at 9 km	
and past missi	TOPEX	1992- 2005	1.2 cm	1.2 µrad at 9 km	
		1992-93+	25 cm		
	ERS-1	1995-96	2.5 011	3.6 µrad at 9 km	
rent		1994-95	13cm		
Cur	Jason-1	2001-É	1.7 cm	1.7 µrad at 10 km	
	Jason-2	2008-É	cal/val phase		
ed	Cryosat-2 2010		3.5 cm NRT	2.1 µrad at 10 km	
anne ssio	SARAL	2010	32 cm NRT	1.5 µrad at 10 km	
Plá mis	Sentinel-3	2011	3.0 cm NRT	2.1 µrad at 10 km	

Needed improvements :

- 4% of altimetric data come from non-repeat orbital tracks
 => drifting orbit
- Cover polar areas
 => high inclination of orbit
- Accurate slope measurements
 - ==> 1 cm on geoid height
 - ==> 1 mgal in gravity
 - ==> 1 µrad (1cm over 10km)

- Requirements for a high-resolution geoid/gravity model :
 - Drifting orbit
 - High inclination orbit

- 1 μrad (1cm over 10km)
- Dense slope measurements, along & across tracks

AI P	timetry Iission	Year	Repettive- ness	Maximum latitude	Me <i>a</i> surement spacing at the Equator	Height RMS accuracy	Slope accuracy
ed ns	Cryosat-2	2010	369 days	88 🗆	uncorrelated	3.5 cm NRT	2.1 µrad at 10 km
anne ssio	SARAL	2010	35 days	82□	150 km	3.2 cm NRT	1.5 µrad at 10 km
ΞË	Sentinel-3	2011	27 days	81 🗆	100 km	3.0 cm NRT	2.1 µrad at 10 km

- Requirements for a high-resolution geoid/gravity model :
 - Drifting orbit
 - High inclination orbit

- 1 μrad (1cm over 10km)
- Dense slope measurements, along & across tracks

Al N	timetry lission	Year	Repettive- ness	Maximum latitude	Me <i>a</i> surement spacing at the Equator	Height RMS accuracy	Slope accuracy
ed ns	Cryosat-2	2010	369 days	88 🗆	uncorrelated	3.5 cm NRT	2.1 µrad at 10 km
anno ssio	SARAL	2010	35 days	82 🗆	150 km	3.2 cm NRT	1.5 µrad at 10 km
ц Ц	Sentinel-3	2011	27 days	81□	100 km	3.0 cm NRT	2.1 µrad at 10 km
bosed sions	SWOT	2016?	22 days	78□	1 km atbest without gap due to its 140 km swath- width	Varies abng the swath, mean 3cm, max 4cm at edges	Max 0.8 µrad at 5Km
Prop	GRAL	2016?	265 days	82ū	5 km	uncorrelated	1 µrad at 10 km

SWOT

Surface Water and Ocean Topography

Swath-altimetry

- Up to 140 km wide
- 2x60 m pixel

Expected accuracy

- 1 μrad over 5km

Main Challenge

 Very precise monitoring of the baseline (10m)

DIFFERENTIAL ALTIMETRY GRAL CONSTELLATION

GRAL Gravity from altimetry

- Constellation of 3 small satellites following the same orbit :
 - Using Ku or Ka band altimeters
 - Quasi-instantaneous along and across track slope measurements
 - Drifting orbit
 - High inclination
- Expected accuracy
 - 1 μrad over 10 km
- Advantages
 - Robust and classical technology
 - Can piggy back a larger payload launch
 - Relatively low cost

2 proposals for a high resolution geoid/gravity from altimetry

- Applications
 - Short wavelength ocean dynamics
 - Gravity field on continental shelves
 - Natural resources prospecting
 - Predicted bathymetry
 - Geodynamics

For a summary, see EOS paper in press

Thank you

2 proposals for a high resolution geoid/gravity from altimetry

Al N	timetry Iission	Year	Repettive- ness	Maximum latitude	Meæurement spacing at the Equator	Height RMS accuracy	Slope accuracy
oosed sions	SWOT	2016?	22 days	78 🗆	1 km at best without gap due to its 140 km swath- width	Varies abng the swath, mean 3cm, max 4cm at edges	Max 0.8 µrad at 5Km
Prop miss	GRAL	2016?	265 days	82ū	5 km	uncorrelated	1 µrad at 10 km

Altimetric mission status

Altime	etry Mission	Year	Repettive- ness	Maximum latitude	Meæurement spacing at the Equator	Height RMS accuracy	Slope accuracy
	GEOSAT	1985-86	drifting	72 🗆	4 km	13cm	3.2 µRad at 9 km *
suo	GEOGAT	1986-90	17 days		164 km	6.5 cm **	2.2 µRad at 9 km *
Current and past missi	TOPEX	1992-2005	10 days	66□	315 km	1.2 cm **	1.2 µRad at 9 km *
	ERS-1	1992-93+	35 days	82 🗆	79 km	2.5 cm **	3.6 µRad at 9 km *
		1995-96	55 uays				
		1994-95	168 days		8 km	13 cm **	
	Jason-1	2001-É	10 days	66□	315 km	1.7 cm ***	1.7 µRad at 10 km
	Jason-2	2008-É	TOdays		o lo kin	cal/val phase	
ed	Cryosat-2	2010	369 days	88□	uncorrelated	3.5 cm NRT	2.1 µRad at 10 km
anne ssio	SARAL	2010	35 days	82 🗆	150 km	3.2 cm NRT	1.5 µRad at 10 km
<u>n</u> E	Sentinel-3	2011	27 days	81 🗆	100 km	3.0 cm NRT	2.1 µRad at 10 km
d S	ABYSS	not funded	drifting	50-63	6 km	uncorrelated	1 µRadat6km
Propose mission	SWOT	2016?	22 days	78□	1 km at best without gap due to its 140 km swath- width	Varies along the swath, mean 3cm, max 4cm at edges	Max 0.8 µRad at 5Km
	GRAL	2016?	265 days	82ū	5 km	uncorrelated	1 µrad at 10 km

Available data	Marine data	Global models	<u>limitations</u>	The future
----------------	-------------	---------------	--------------------	------------

The limits of these models are partly due to the altimetric technology, which prevents the exploitation of measurements close to the coastlines and limits the space resolution along the satellite tracks (with a foot print of approximately 7 km). In addition, the strategy of measurements adopted for altimetric missions generally favours the study of oceanographic processes and their temporal variability (i.e. repeated orbits) rather than a complete spatial coverage needed for highly resoluted geophysical studies.

- Limitations of altimetric 1 HZ data Retracking and 10 HZ processing?

That what Sandwell et al. made in V16 version of the altimetric models (Sandwell DT et Smith WHF, 2005 retracking ERS1 Altimeter waveforms For optimal gravity field recovery GJI, 163, 79-89) Lillibridge et al, 2006, 20 years of improvements to geosat altimetry, ESA Symposium 15 Years of Progress in Radar Altimetry, Venice, 12-18 mars, 2006)