Postseismic crustal movement of the 2011 Tohoku Earthquake and its impacts on hydrographic surveys and charts

Taisei MORISHITA, Shin TANI and Tsuyoshi YOSHIDA

Japan Hydrographic and Oceanographic Department (JHOD)

Contents

1. 2011 Tohoku Earthquake and JHOD's responses to the disaster

2. Issues related to postseismic crustal movement and JHOD's actions

2011 Tohoku Earthquake

Coseismic movement

Vertical Horizontal 42° 42° on land (by GSI) on land (by GSI) on seafloor (by JHOD) on seafloor (by JHOD) 41° 41° **3**m 40° 40° 39° 39° M9.0 5m ズ 38° 38° M9.0 **2**m **24m** 37° 37° 50cm 36° 36° 5m — 100 km 100 km 35° 140° 141° 142° 143° 144° 138° 139° 140° 141° 142° 143° 144° 145° 138° 139° 145°

JHOD's Responses

1. Phase 1 (March - April 2011) Obstruction surveys for re-opening damaged ports

All the ports were re-opened within 15 days after the earthquake.

2. Phase 2 (May 2011 -)

Hydrographic surveys for chart revision 1st stage : high-priority areas in a port 2nd stage: other areas in a port

Kuji Miyako Kamaishi Ofunato Kesennuma Ishinomaki Shiogama Sendai

Hachinohe

Soma

Onahama

Hitachi Hitachi-naka Oh-arai Kashima

Re-determination of chart datum levels

"CDL-11"

= postseismic chat datum level determined in 2011

After the earthquake

1st-stage survey: high-priority areas in a port

(May-June 2011)

New edition chart (Sep. 2011)

2nd-stage survey: other areas in a port

All data merged (June 2012)

Progress as of Oct. 2013

	2 nd -stage survey completion	2 nd -round chart revision
Hachinohe	FY2012	FY2013
Kuji	FY2013	
	completed in the 1 st sta	
Kamaishi	FY2014	F12014-2015
ofunato	FY2012	J
Kesennuma	FY2013	FY2013
Ishinomaki Shiogama	FY2012	Sep. 2013
Sendai	FY2012	FY2013
Soma O	FY2012	FY2013
	FY2013	
Onahama	FY2013	F 12014 - 2015
Hitachi	FY2012	FY2013
Hitachi-naka Oh-arai	FY2012	FY2013
Kashima	FY2012	FY2012
Tokyo	FY2012	FY2014

Postseismic movement (GEONET)

total displacement from 12 Mar. 2011 to Aug. 2013

Data: GPS network "GEONET" (by GSI)

Time series of displacement

Period: 12 March 2011 to August 2013

Data: GPS network "GEONET" (by GSI)

Mechanism of postseismic movement

Postseismic movement

- Phenomenon common to major earthquakes
- Due to a slow slip in an adjacent region to a coseismic slip region

Estimated by terrestrial GPS data and seafloor GPS/Acoustic data

Significant uplift will leads ...

Real depth << Chart depth

Impact on survey data/charts

 a huge amount of existing sounding data collected after the earthquake, based on old chart datum levels

 soundings of nautical charts published after the earthquake

How should we deal with?

- to throw them away and do re-survey?
- to leave them as they are?

Approaches we took

To do test surveys for checking if water depth change due to postseismic uplift has occurred over a chart area.

Test survey (Shiogama port, July 2013)

Another example of fully-surveyed port

Another example of fully-surveyed port

2nd edition of chart (Sep. 2013)

Concluding remarks

- For the three ports, depth correction was applied to existing older survey data across the board, using values of chartdatum-level change.
- Postseismic movement is anticipated to continue for further several years.
- In near future, similar depth correction may be needed for other ports and/or the above-mentioned three ports.

Thank you for your kind attention!.