Kongsberg Maritime

Introducing K-MATE
For Maritime Autonomous Surface Ships (MASS)

LEE Che Keong
Sales Manager, Subsea
Che.Keong.Lee@km.Kongsberg.com
Kongsberg Maritime Autonomy Engine

- Joint project between KM and FFI
- Designed to offer new autonomous capabilities for MASS (Maritime Autonomous Surface Ships)
- Offering different operational modes:
 - Autonomous
 - Supervised
 - Direct control
- Includes modules for:
 - Control and guidance
 - Navigation and positioning
 - Scene analysis
 - Payload control
- Current capabilities
 - Autonomous Waypoint Following
 - Collision avoidance using Radar & Lidar
 - Virtual anchor, AUV following
K-MATE

Kongsberg Maritime Autonomy Engine

- Adaptable autonomy kit for almost any hull
- Scalable capability from waypoint following to collision avoidance and more
- Common architecture with HUGIN and MUNIN vehicles

MASS for Mapping/Survey MASS for AUV Supervision MASS for AUV launch and recovery MASS for Towing Application MASS for integrated MMCM
K-MATE

OEM Autonomy
- Basic autonomy engine
- Electrical integration with hull systems
- Available as a “MASS Autonomy Kit”
- Can be integrated with KM payload

Small: 2-7m
- For science or very shallow survey
- Opportunity for payload options:
 - GeoSwath 4
 - μPAP

Medium/Coastal: 7-9m
- For commercial, science and defence applications
- Integrated collision avoidance
- Ability to supervise AUVs
- Full KM payload suite:
 - EM2040P or C
 - HiPAP
 - MBR

Large/Trans-Ocean: 10-15m
- For commercial, science and defence applications
- Integrated collision avoidance
- Ability to supervise AUVs
- Full KM payload suite including:
 - EM302, 2040 or 712
 - HiPAP
 - MBR
K-MATE Components

Inputs:
- Navigation & Positioning
 - NavP/Sunstone
 - Seapath 136 GNSS & IMU
 - HiPAP/APOS
- Communications
 - Iridium/Inmarsat
 - Marine Broadband Radio
 - Remote Control
- Scene Analysis
 - AIS300
 - Radar
 - Cameras

Core Elements:
- User Interface
- Mission Plan

Outputs:
- Guidance and Control
 - Waypoint Following
 - AUV Tracking
 - Collision Avoidance
- Mission Implementation & Supervision
 - Real-time Status
 - Real-time Data
 - Goal Based Adaptive Control
- Payload Control
 - Multibeam/HISAS
 - AUV
 - HiPAP

Data Handling:
- KognifAI
 - Cloud-based data handling
 - KM Apps like Reflection
 - Third Party Apps
 - Requires comms link

- In-Mission Processing
 - SITAR
 - Pipe Tracking
 - Terrain Navigation
 - Automated Processing
K-MATE Goal Based Performance

Pre-Mission Goal Based Mission Planning
• Enable K-MATE to determine the best survey pattern
• Track spacing determined by simulated performance of multibeam echosounder
• Ability to determine a stand-off range from AUV or mothership

In-Mission Adaptive Control
• Modify survey pattern based on environment and sensor performance
 – Wind, waves and sea state
 – Track spacing adjustment based on real-time sonar performance monitoring
 – Adjust heading and speed to adapt to AUV or mothership
• In-mission processing algorithms e.g. target recognition
• Adaptive in-mission replanning

Conditions
• Safety is overriding factor
• Collision avoidance takes priority over mission plan or adaptive control
K-MATE Collision Avoidance

Scene Analysis
• Sensors:
 – Radar
 – AIS
 – Cameras (Infrared, day TV)
• Processes:
 – Data is fused on-board in K-MATE and potential collisions are identified
 – Traffic is always transmitted to control centre

Collision Avoidance
• Phase 1:
 – Alert operator
 – Sound horn, flash lights
 – Come to a stop
• Phase 2:
 – Open communications link to nearby traffic
 – Automated response in accordance with the rules of the road
 – mission plan or adaptive control
K-MATE: Applications

• Commercial
 – Hydrography
 – AUV Support
 – Oil spill monitoring and clean-up

• Defence
 – MCM
 – REA
 – ASW

• Scientific & Research
 – Oceanography
 – Hydrography
 – Environmental monitoring

• Miscellaneous
 – Search & Rescue
 – Marine salvage
K-MATE and KognifAI

Connecting the Ocean Through Data

- Real-time access to system performance and data globally
- Secure cloud-based data storage
- Apps for visualization and processing
 - KM Apps like Reflection
 - Third party Apps
- Sharing access and adding value
 - Transmitting meaningful data to minimize bandwidth
 - Accessing the full data set when possible
 - Requires smart processing on-platform
K-MATE: Yara Birkeland

Key Facts:
- Fully battery powered ship
- Prepare for remote control and fully autonomous operations
- Dimensions & Performance
 - LOA: >70 m
 - Beam: 15 m
 - Depth: 12 m
 - Draft: (full) 5m
 - Service speed: 6 Knots

Purpose and Performance:
- To replace road journeys
- Sail within 3 ports
 - Herøya to Brevik: 7 nm
 - Herøya to Larvik: 30 nm
- Controlled by:
 - YARA at Porsgrunn
 - Kongsberg Maritime

Schedule:
- 2017: design finalized
- 2018 Delivery & testing with small crew
- 2019: Remote operation
- 2020: Fully autonomous operation
K-MATE: Hrönn

Key Facts:
- Light duty, offshore utility ship servicing:
 - Offshore energy
 - Hydrography
 - Scientific
 - Offshore fish-farming
 - ROV or AUV support
- Capabilities and equipment:
 - DP
 - Navigation & positioning
 - Communications
- K-Chief automated bridge and K-Bridge ECDIS will be replicated in control centre

Activities:
- Design completed in 2017
- Testing in Norway’s dedicated autonomous trials area
- To be classed and flagged by DNV GL and Norwegian Maritime Authority
K-MATE: Odin

Project:
• Joint development between FFI and KM
• Can be manned or unmanned
• Multipurpose platform for defence research
 – Hydrography
 – Mine Countermeasures surveys
 – AUV launch and recovery
• Configured to carry an AUV

Equipment:
• Systems:
 – Dual engines
 – Electronic anchor
• Navigation, Communication & Collision Avoidance:
 – Seapath 136
 – AIS 300
 – Radar, Camera & LIDAR
 – MBR
 – Iridium
WORLD CLASS
through people, technology and dedication
Utilizing Kongsberg Maritime Solutions:

- K-MATE
- AIS 300
- Seapath 130
- Maritime Broadband Radio
- HiPAP Positioning and Communications System
- Multibeam Echosounders
K-MATE: SEA-KIT Trans-Ocean Survey

Dimensions:
• Length: 11 m
• Width: 3 m
• Height: 3 m
• Designed to carry a HUGIN AUV

Performance:
• Endurance:
 – Standard: >30 days
 – Enhanced: >300 days
• Speed: <8 Knots

Equipment:
• Systems:
 – Dual diesel electric generators
 – Dual stern thrusters plus bow thruster
 – Electronic anchor
• Navigation, Communication & Collision Avoidance:
 – Seapath 136
 – AIS 300
 – Radar & Camera
 – MBR
 – INMARSAT & Iridium