

KONGSBERG

Hand lead-line

Nautical chart

Global Navigation Satellite System (GNSS)

Seapath 1996: Tracked 25 satellites. 1.5 m position accuracy.

Seapath 2016: Tracks unlimited satellites. dm accuracy with differential GNSS and augmentation services. cm accuracy with RTK.

Number of satellites

Multibeam versus single beam

Kongsberg introduced its first multibeam echosounder in 1986

Singlebeam survey: Large unmapped gaps between lines

Multibeam survey: 100% coverage of seafloor

Resolution matters

Multibeam echosounder 1986 - EM 100

- 95 kHz frequency
- 27 or 32 receiving beams
- Beam widths:
 - $-2 \times 3^{\circ}$
 - $-2.5 \times 3^{\circ}$
 - $-5.5 \times 3^{\circ}$
- 100° coverage
- Stabilization
 - Roll: electronic
 - Pitch: mechanical

Multibeam echosounder 1999 - EM 1002

- 95 kHz frequency
- 111 receiving beams
- · Beam width:
 - $-2.0 \times 2.3^{\circ}$
- 150° coverage
- Stabilization
 - Roll: electronic
 - Pitch: mechanical

Pock marks at the Troll oil and gas field in the North Sea.

KONGSBERG

Multibeam echosounder 2016 - EM 712

- 40 to 100 kHz frequency
- 512 receiving beams (max 1600 soundings/ping)
- · Beam widths:
 - $-0.25 \times 0.5^{\circ}$
 - $-0.5 \times 0.5^{\circ}$
- 140° coverage
- Stabilization
 - Roll: electronic
 - Pitch: electronic
 - Azimuth: electronic

Image provided with permission of Fugro.

Wideband systems

Shallow to full ocean depth

Mapping the Mariana Trench

EM 122 data.
Courtesy of
Naval
Oceanographic
Office.

EM 122 on RV Sonne

16 m TX frame array, 8 m RX frame array: $0.5^{\circ} \times 1.0^{\circ}$ @ 10 kHz

Backscatter

KONGSBERG PROPRIETARY – See Statement of Proprietary Information

Courtesy Geological Survey of Norway

Backscatter interpretation

Water column data

Water column data and multiple detections

Courtesy of John Hughes Clarke – Ocean Mapping Group / University of New Brunswick

Trend: Research vessels, hydrographic vessels

Merging shallow and deep water data

Image courtesy Stockholm University. EM 2040 and EM 122 data.

Sub-bottom profiler

Schooling
Sand Eel
close to
bottom in
the North
Sea
mapped
with
Simrad
ME70
scientific
multibeam

Trend: portable systems for shallow water

Trend: marine robotics

Gulf of Mexico commercial AUV survey 2000 - 2001

GPS - USBL

AUV survey position accuracies Gulf of Mexico 2000 / 2001:

• 1300 m: 2 m (1σ)

• 2100 m: 4 m (1σ)

Detailed seabed mapping with AUV

Data courtesy of Fugro

Synthetic aperture sonar long range example

1x1 m cube Range 320 m

HISAS 1030 on HUGIN 1000-MR Range **25-325 m** AUV altitude 40 m Speed 2.3 knots

WORLD CLASS - through people, technology and dedication

Interofermetric SAS and MBE for hydrographic mapping

Interferometric SAS

- High area coverage rate, typically 2km²/hr.
- Blind zone directly below the vehicle (nadir gap)

MBE

- Beamformers have advantage at nadir
- Less coverage than interferometric SAS

Page 29

HISAS sidescan bathymetry

Merged bathymetry

Pipeline survey

Trends in data processing

KONGSBERG

What holds the future?

- Cleaner data
- Improved accuracy
- Multifrequency seafloor classification
- Synthetic aperture sonar
- Continued robotization
- Extending from mapping to monitoring
- Connected operations
- Automated processing
- Open standards

WORLD CLASS - through people, technology and dedication

