

Such a Big Ocean but our Footprints are so Small (Sonar Footprints)

Larry Mayer Center for Coastal and Ocean Mapping University of New Hampshire

FORUM FOR FUTURE OCEAN FLOOR MAPPING

15 June 2016

It's easy to image the earth

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat

Google earth

But what about the $\frac{3}{4}$ of the Earth that's BLUE?

How inappropriate to call this planet Earth when clearly, it seglean Image Landsat Arthur C. Clark Google earth

~ 600,000,000,000,000 photos ~ 10 Billion years

Bathymetry Predicted from Satellite Altimetry

Satellite Predicted Bathymetry

(Sandwell and Smith)

2km DTM

Direct Mapping

Lead Line:

Direct Mapping

Lead Line:

til pe come in to till fillin deep and pf n be fremp frounde it is betievene fufthant and tile in the entre of the chance of flamdres and foo goo power cours til ve hane fiver fidnu deep. than goo et noathe eft a longe the fee. + c

1450

Direct Mapping

Lead Line:

til pe come in to til fadim deep and pf grounde it 16 Betivene fuffant and call of the chanet of flambres and foo goo y til ve fanc fiver fadun deep. than goo e a Conge the fee. + 2.

Single Beam Echo Sounder

From Rick Brennan

Singlebeam Sonar Shiptracks

Singlebeam Soundings per 2/km

From Jenn Jencks and Brian Meyer NCEI

Multibeam Sonar: Mills Cross or Mills T Array

Multibeam Sonar

Image from: http://www.atlas-elektronik.de

Image derived from theoretical sonar model interacting with artificial seabed DTM using *"SynSwath"* John Hughes Clarke - UNB

Image derived from theoretical sonar model interacting with artificial seabed DTM using "SynSwath"

John Hughes Clarke - UNB

What a difference a swath makes..

A new perspective → new insights and many new applications

Beringian Margin

Beringian Margin

10 seamounts < 500 m

USS San Francisco (SSN 711) – in drydock after hitting uncharted seamount

http://www.freerepublic.com/focus/f-news/1330034/posts?page=515

Arctic Ocean ~420,000 km² 9 cruises 2003, 2004, 2007, 2008, 2009,2010, 2011, 2012

Four Canadian – U.S. Joint Cruises in Arctic

CCGS Louis S. St-Laurent U.S. COAST GUARD 20 **USCGC Healy**

9 Arctic Cruises: 2003-2012 420,000 km²

180°0'

165°0'W

150°0'W

135°0'W

Bathymetry

From Where?

Seafloor Backscatter

To What?

Seafloor Backscatter -- Habitat Mapping...

Canadi

WATER COLUMN MAPPING

Π

Water Column Mapping:

Gas Seeps

Tom Weber

MID-WATER MAPPING FOR WRECK IDENTIFICATION

Duncan Mallace and the Port of London

PHYSICAL OCEANOGRAPHY internal waves, pycnoclines...

(Rob Hare, John Hughes Clarke and Jonathan Beaudoin)

<<12% of global ocean covered with MBES data

GLOBAL MBES COVERAGE FROM NGDC

We've been at this for 40 years and still only about 12% of deep ocean has been mapped with MBES - Why?

- Physics tradeoffs between propagation, resolution and system size
- Belief that deep ocean is boring and uninteresting
- Cost systems are not cheap shiptime even more costly

HOW MUCH WOULD IT COST TO MAP THE ENTIRE WORLD OCEAN WITH MULTIBEAM SONAR?

IGNORE SHALLOW WATER

Cumulative Cost of Surveying Atlantic and Gulf EEZ with Multibeam vs Depth

SHALLOW WATER MAPPING Autonomous Surface Vessels

C-Worker ASV Global

Teledyne Oceansciences Z-Boat Hydronaulix "EMILY" Boat

SHALLOW WATER MAPPING

Satellite Imagery-Derived Bathymetry

MAPPING THE WORLD OCEAN WITH MBES (94%)

THE MOON

100m pixel resolution

~\$600M

-6000 -4000 -2000 0 2000 4000 6000 Elevation (m) raphic projection centered on the farside

http://www.nasa.gov/mission_pages/LRO/news/Iro-topo.html

TOPOGRAPHY OF MARS

HIRISE Imagery NASA/JPL/UAriz/USGS http://www.uahirise.org/dtm 1 m DTMs

And Earth?

And Earth?

30 m x 15 m long array \rightarrow 17 x 34 m resolution in 4000 m water

CCOM JHC

30 m × 15 m long array → 17 × 34 m resolution in 4000 m water remotely operated via telepresence

30 m x 15 m long array → 17 x 34 m resolution in 4000 m water remotely operated via telepresence Other remote measurements (atmosphere, ocean, etc)

30 m x 15 m long array \rightarrow 17 x 34 m resolution in 4000 m water

~1/3 the cost of a research vessel

THE BEGINNING

There is so much more to map and explore!

* ** **