
NOAA NGDC MGG

The NOAA National Geophysical Data Center

Over 600 data types - from the core of the Earth to the surface of the Sun

NGDC

Barry Eakins,

Source Data

NGDC/IHO Data Center for Digital Bathymetry

Long-term archive of and access to global marine geophysical data including bathymetric soundings, gridded compilations, digital contours and products

GEBCO Relevant Datasets:

- Marine trackline geophysics (global)
- Multibeam swath sonar (global)
- NOS hydrographic soundings (U.S)
- Coastal lidar (U.S.)

How Accurate is the Data?

Assessing Data Quality

- Data provided to NGDC/IHO DCDB are reviewed and checked for obvious errors (e.g., suspect navigation, unrealistic ship speeds, impossible depths, etc.) and completeness of metadata.
- NGDC/IHO DCDB does not edit data values, but may provide information regarding identified errors back to data providers for possible correction and resolution of issues.

Describing and Documenting Data

Actively adapting & applying community standards

- FGDC-compliant metadata
- Implementing ISO standards
- Marine XML (MML) collaboration
- NASA/Global Change Master Directory (GCMD)
 Theme & Place keywords
- Dublin Core metadata tags

Preserving and Organizing Data

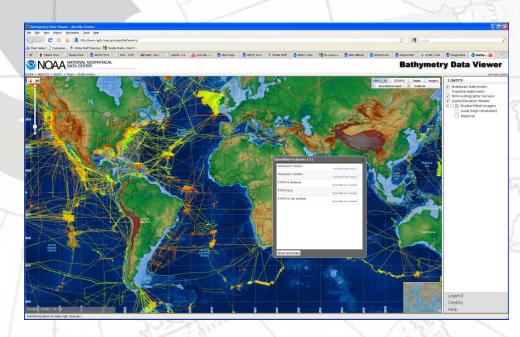
Long - Term Archive

- Documented to FGDC/ISO standards
- Archived in original and processed forms
- Periodically migrated to new/approved media

Serving up the Data

Making data publicly available

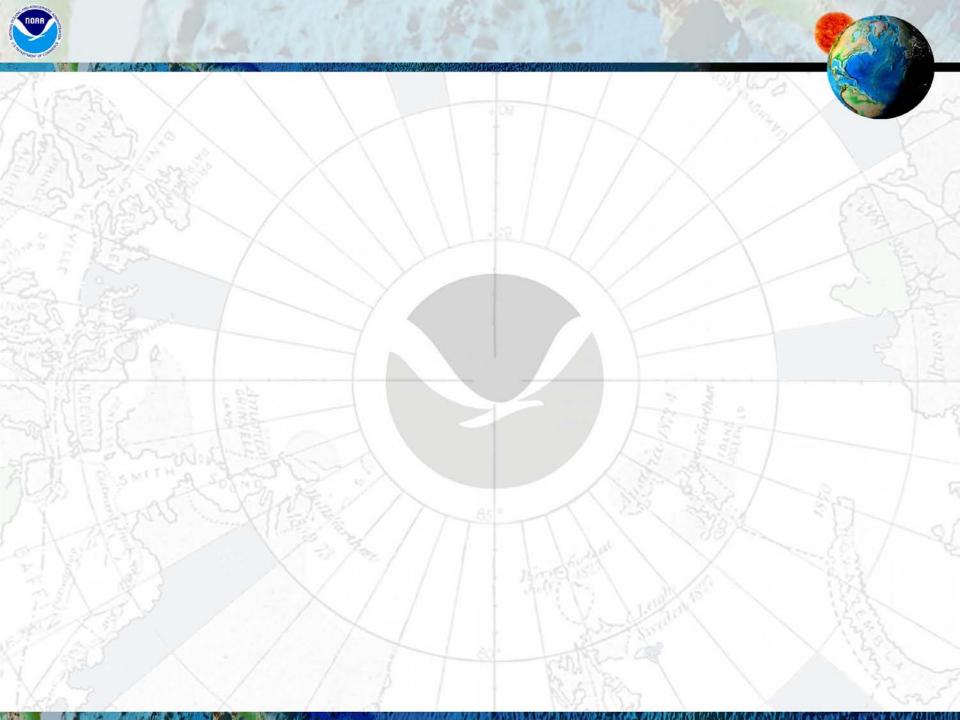
- Provide raw and processed data, as well as integrated products
- Data are in the public domain and freely accessible unless restrictions are requested by the data contributor
 - Hold for a specified period of time
 - Agreement to use only for specific purposes
- Data are online, searchable, and downloadable in multiple formats.



Serving up the Data

Making data publicly available

- Geospatially-enabled relational databases
- Interactive ArcGIS web maps
- Web Feature Services
- Web Map Services
- File download in multiple forms



Future Efforts

Wish List

- Enhanced IHO DCDB interface for data submission, display, search and retrieval
- Collaboration/coordination with IHO Member States for greater data submission to IHO DCDB
- ISO metadata for all data
- Detailed data assessment and cleaning

NGDC Coastal DEMs

High-resolution DEMs of U.S. coastal communities to support inundation modeling (e.g., tsunami, hurricane storm-surge)

- integrated bathymetry and topography
- 1/3 arc-second (~10 m) to 1 arc-second (~30 m)
- common vertical datum (NAVD 88, MHW)

DEM Source Data

Data types

- pre-complied DEMs
- hydrographic soundings
- coastal lidar (bathy and topo), ifsar
- multibeam sonar, interferometric sonar
- satellite images

Obtained from

- NGDC
- other Federal, State and local govts (e.g., USGS, USACE, cities, counties)
- academia
- private sector

Source Data Assessment

Data assessment

- internal (e.g, spikes, noise)
- inter-dataset consistency (e.g., overlap differences, edge offsets)

Data processing

- convert to common horizontal and vertical datums, and common file format
- remove vegetation, building, water-surface returns from lidar
- multibeam ping editing, sound velocity corrections
- clipping to pre-defined extents (e.g., footprint of overlapping dataset)

Gridding

Gridding technique

- spline algorithm [GMT and MB-System]
- grid bathymetry first to interpolate into the coastal zone where data are sparse (avoid "topographic creep")

Grid assessment

- comparison with source data [FME, gdal, netCDF C-library]
- comparison with independent datasets (e.g., geodetic monuments, nautical charts, maps)
- visual inspection (e.g., color-hillshades, perspectives, slope) [ArcGIS]

Grid updating

- add new data to existing source data collection
- clean, resolve inter-dataset inconsistencies
- regrid

Documentation

Technical reports

- documents:
 - data sources and problems
 - processing and gridding techniques
 - grid evaluation
- published as NOAA Technical Memoranda

Metadata

- FGDC-compliant record
- embedded with DEM zip download

Limitations

Methodologies

- estimating cell uncertainty is qualitative, not quantitative
- gridding software can introduce gridding artifacts (e.g., north-south lineations, "pimples")
- constant-offset vertical-datum conversion necessary in some areas

Software

• inability to effectively handle large file sizes (e.g., millions of points in lidar)

Wish List...

Wish list

• use cell values from newer, high-resolution DEMs to update older, lower-resolution DEMs

<u>Issues</u>

- morphologic change (e.g., storm events or long-term that render data inaccurate)
- vertical datum conversion

Current and future efforts

- companion DEMs structured square-cell and unstructured
- cell uncertainty due to gridding interpolation

325 Broadway, E/GC Boulder, CO 80305-3328 USA

Phone: 303-497-6826 Email: ngdc.info@noaa.gov Web: http://www.ngdc.noaa.gov/