

applications of radar altimetry and ship soundings

Gravity:

- plate tectonics
- planning ship surveys
- inertial guidance (mostly military)
- petroleum exploration

Topography:

- seafloor roughness
- seamounts
- tsunami models
- tide models, tidal friction, thermohaline circulation
- planning undersea cables
- law of the sea
- education and outreach

1/2 of global seafloor bathymetry not resolved at 10 km resolution

Bathymetry from Gravity and Ship Soundings: Inverse Nettleton Method

- 1. Grid available depth soundings.
- 1. Separate into low-pass and high-pass filtered components (~160 km).
- 1. High-pass filter gravity and downward continue to low-pass filtered depths.
- 1. Perform a robust linear regression of high-pass topography and high-pass, downward-continued gravity in small regions.
- 1. Multiply gravity by topography/gravity slope to predict topography in pass band.
- 1. Add original low-pass filtered depth.
- 1. Force agreement with soundings.

Where does your organization obtain data?

What tools and methods do you use to clean and disseminate your data? cm_Editor and www/ftp

CM FORMAT

The common file (filename.cm) consists of ASCII text with variable precision depending on the precision of the original data. There are 7 columns as follows:

time Ionaitude	time since an epoch (sec), or record sequence numbe decimal degrees (+/- 180.)
latitude	decimal degrees (+/- 90.)
depth	depth; below sea level is negative (corrected meters)
sigma_h	estimated uncertainty in navigation (m)
	(0=no estimate)
sigma_d	depth uncertainty (m)
	(9999=edited data; -1= no estimate)
source_id	unique ID number for each source (0-65535).
pred_depth	predicted depth estimate (m) (used internally at SIO for editing)

1 59.39518 23.25101 -2693 0 -1 54627 -2662 2 59.42965 23.23397 -2722 0 -1 54627 -2587 3 59.46411 23.21693 -2598 0 -1 54627 -2571 4 59.49880 23.20098 -2645 0 -1 54627 -2605 5 59.53434 23.18941 -2750 0 -1 54627 -2836

6 59.56989 23.17783 -2893 0 -1 54627 -2923

What tools and methods do you use to clean and disseminate your data? cm_Editor and www/ftp

A	D		U	E	r	
SID start	SID end	directory	data type	status - raw	status - cm	
0	0		predicted			
1	16	data/public/NAVO	NAVO multibeam	16 files Mbformat 121	16 files not edited	
18	78	data/public/JAMSTEC	JAMSTEC multibeam		some files edited	
100	101	data/private/GEBCO	GEBCO Contours Antarctica	contours digitized from GEBCO sheet	not edited	
200	269	data/public/JAMSTEC	JAMSTEC multibeam			
16,387	16403	data/private/NGA	NGA DNC soundings < 300 m (3 deep	no 11 files-shallow	11 files not edited	
16,500	17875	data/public/NGA/xyz	NGA trackline data	1376 unique files		
32,768	32774	data/public/NOAA	large grids, various sources		7 cm some edited	
32,775	32812	data/public/CCOM	Law of Sea surveys - offshore US	multibeam - xyz	38 files not edited	
32,813	32857	data/public/GEBCO	UK Hydrographic Office	mulibeam - xyz	45 files not edited	
32,858	32865	data/public/NOAA	Pacific Islands + Inland lakes	grids - xyz	8 files not edited	
32,866	32881	data/public/CCOM	Law of Sea surveys - part 2	multibeam - xyz	16 files	
32,900	32916	data/private/GEBCO	ENC -GEBCO	Elactronic Navigation Charts ENC	16 files	
32,900	32922	data/private/GEBCO	MBES from Colin Jacobs, and OLEX	grd and xyz files	7 files, OLEX not yet edited or used	
48,000	48174	data/public/NOAA_geodas	NGDC trackline added July 9, 2009	new mgd77 files	175 files edited	
49,152	53907	data/public/NOAA_geodas	NGDC trackline edited	4756 edited dat files	4756 edited	
53,909	54165	data/public/SIO_multi	grids from SIO multibeam	grd files at 250m res	edited, some bad not used	
54,166	54187	data/public/SIO	various grids		18 files, edited	
54,188	54288	data/private/IFREMER	IFREMER and VML	100 files	all files edited	
54,289	54335	data/public/SIO	various grids		all files, edited	
54,336	54377	data/public/SIO_multi	grids from SIO multibeam - part 2	42 files		
54,498	54572	data/public/SIO	WHOI GLOBEC		some edited	
54,573	54673	data/public/SIO	Polar programs and prop		not edited	
54,674	55084	/data/private/3DGBR	Rob Beaman	441 files of Great Barrier Reef	edited	
55,085	55129	/data/public/SIO	Australia multibeam	45 files of Antarctic data	edited	
65,400	65403	/data/public/lakes	large inland bodies of water		derived from grids	
65,500	65503	data/public/IBCAO/cm	Blockmedianed IBACO points	From Martin J, orig in stereo xy	edited	
65,535	65535	data/public/IBCAO/cm	IBCAO 1 minute grid V2.23		not edited	

What tools and methods do you use to clean and disseminate your data? cm_Editor and www/ftp

54153 WEST01MV.cm /seasat2/data/public/SIO_multi http://nsdl.sdsc.edu/beta/expeditions.html YEAR no_metadata_found 54154 WEST03MV.cm /seasat2/data/public/SIO_multi http://nsdl.sdsc.edu/beta/expeditions.html 1994 Scripps_Institution_of_Oceanography 54155 WEST04MV.cm /seasat2/data/public/SIO_multi http://nsdl.sdsc.edu/beta/expeditions.html YEAR no_metadata_found 54156 WEST05MV.cm /seasat2/data/public/SIO_multi http://nsdl.sdsc.edu/beta/expeditions.html 1994 Scripps_Institution_of_Oceanography 54157 WEST06MV.cm /seasat2/data/public/SIO_multi http://nsdl.sdsc.edu/beta/expeditions.html 1994 Scripps_Institution_of_Oceanography 54158 WEST08MV.cm /seasat2/data/public/SIO_multi http://nsdl.sdsc.edu/beta/expeditions.html 1994 Scripps_Institution_of_Oceanography 54159 WEST09MV.cm /seasat2/data/public/SIO_multi http://nsdl.sdsc.edu/beta/expeditions.html 1994 Scripps_Institution_of_Oceanography 54160 WEST10MV.cm /seasat2/data/public/SIO_multi http://nsdl.sdsc.edu/beta/expeditions.html 1995 Scripps_Institution_of_Oceanography 54161 WEST11MV.cm /seasat2/data/public/SIO_multi http://nsdl.sdsc.edu/beta/expeditions.html 1995 Scripps_Institution_of_Oceanography 54162 WEST12MV.cm /seasat2/data/public/SIO_multi http://nsdl.sdsc.edu/beta/expeditions.html 1995 Scripps_Institution_of_Oceanography 54163 WEST13MV.cm /seasat2/data/public/SIO_multi http://nsdl.sdsc.edu/beta/expeditions.html 1995 Scripps_Institution_of_Oceanography 54164 WEST15MV.cm /seasat2/data/public/SIO_multi http://nsdl.sdsc.edu/beta/expeditions.html 1995 Scripps_Institution_of_Oceanography 54165 WSFL01WT.cm /seasat2/data/public/SIO_multi http://nsdl.sdsc.edu/beta/expeditions.html YEAR no_metadata_found 54166 SWIR_e.cm /seasat2/data/public/SIO 54170 atalante_97_found_e.cm /seasat2/data/public/SI0 54171 foundation_block_e.cm /seasat2/data/public/SIO 54174 spanish_shackleton_e.cm /seasat2/data/public/SI0 54175 vol1_e.cm /seasat2/data/public/SI0 54176 vol10_e.cm /seasat2/data/public/SIO http://ocean-ridge.ldeo.columbia.edu/general/html/home.html 2000 54177 yol2_e.cm /seasat2/data/public/SIO http://ocean-ridge.ldeo.columbia.edu/general/html/home.html 2000 54178 yol3_e.cm /seasat2/data/public/SIO http://ocean-ridge.ldeo.columbia.edu/general/html/home.html 2000 54179 yol4_e.cm /seasat2/data/public/SIO http://ocean-ridge.ldeo.columbia.edu/general/html/home.html 2000 54180 yol5_e.cm /seasat2/data/public/SIO http://ocean-ridge.ldeo.columbia.edu/general/html/home.html 2000 54181 yol6_e.cm /seasat2/data/public/SIO http://ocean-ridge.ldeo.columbia.edu/general/html/home.html 2000 54182 yol7_e.cm /seasat2/data/public/SIO http://ocean-ridge.ldeo.columbia.edu/general/html/home.html 2000 54183 vol8_e.cm /seasat2/data/public/SIO http://ocean-ridge.ldeo.columbia.edu/general/html/home.html 2000 54184 vol9_e.cm /seasat2/data/public/SIO http://ocean-ridge.ldeo.columbia.edu/general/html/home.html 2000 54185 whoi_globec_e.cm /seasat2/data/public/SIO 54186 CentAm_1000_1000_z.cm /seasat2/data/public/SIO 54187 Chile_all_1000_1000_z.cm /seasat2/data/public/SI0 54188 90012211.bat.cm /seasat2/data/private/IFREMER http://www.ifremer.fr/anglais/produits/base.htm 54189 90012411.bat.cm /seasat2/data/private/IFREMER http://www.ifremer.fr/anglais/produits/base.htm 54190 90012511.bat.cm /seasat2/data/private/IFREMER http://www.ifremer.fr/anglais/produits/base.htm 54191 91004011.bat.cm /seasat2/data/private/IFREMER http://www.ifremer.fr/anglais/produits/base.htm 54192 91004111.bat.cm /seasat2/data/private/IFREMER http://www.ifremer.fr/analais/produits/base.htm

What tools do you use? ER_Mapper

2			Cell Values Profile		
T AV	erage (000	coor		Gose
22000	10				
					Signature
Dand :	81:T	pagraphy	(Sandwell and Smith, 2007 - Version 9,1)_meters	1	
0	0	0			
54288	54288	54288			-Heighbors
0	0	0			
	_			UR	Values
01:To	pograp	hy (Sand	well and Smith, 2007 - Version 9.1)_nieters 54268	+	
				100	
					Help

Why make SRTM30_PLUS when we have GEBCO08?

....Google

GEBCO08 is mostly SRTM30_PLUS V5.0 we are on V7.0 now.

Proposal for Distributed Archive of Cleaned Ship Soundings

Interested organizations would offer to host an L1 site: IHO(GEBCO), NGDC, UNH, SIO, JAMSTEC, UH, U. Sydney,

Site includes: all public cm-files and associated metadata, global grids at 30-arc second resolution with matching grids of source_id. These would be **available** to anyone without registration or agreements.

Public data would be mirrored periodically.

To Do:

Populate the metadata (source_id, filename, directory location, attribution=nation, institution, ship, PI, link to data provider of original data. . . Prepare a data base structure for L1 data files (need professional help). Develop a method for adding and editing data (e.g., CVS) Develop a method for syncing the multiple data bases.

Levels of Data

L0 – raw sounding data (e.g. multibeam)

L1 – cleaned soundings in common format(s) (e.g. CM-files at 500 m resolution)

L2 – global and regional grids

L3 - images and higher level products (e.g., Google Earth overlays)

What is next at SIO?

Improve global marine gravity using data from CryoSAT-2 and Jason-1.

Develop new predicted depth grid using new gravity and edited soundings.

Develop metadata tool for Google Earth so each sounding will link back to data provider.

(This research was funded by the National Science Foundation. *High-Resolution Marine Gravity, Seafloor Topography, and Seafloor Roughness*; Sandwell; OCE0326707; \$166,505 09/01/2008 - 02/31/2011)

Seamount Discovery Tool

- Created as an efficient way for ships of opportunity to plan routes that travel over uncharted seamounts.
- Most seamounts < 2 km tall are uncharted
- Seamount exploration strategies
 - acquire and edit existing data
 - ships of opportunity and Google Earth
 - satellite altimetry
- Discovery tool uses Google Earth and a GPS

Wessel, P., D. T. Sandwell and S-S. Kim, The global seamount census, <u>Oceanography, 23:1 p. 24-33, 2010.</u> *Sandwell, D. T., and P. Wessel, Seamount discovery tool aids navigation to uncharted seafloor features,* <u>Oceanography, 23:1, p. 24-26, 2010.</u>

uncharted seamounts > 3 km tall

size distribution of seamounts

Seamount Exploration Strategies

- Existing data
- Ships of opportunity and Google Earth (GE) GE to encourage data sharing GE as a real-time survey tool
- Satellite altimetry Cryosat II Other non-repeat orbit altimeters

San Diego to Honolulu - White Holly - May 2009

red - great circle = 4180 kmgreen - 14 new seamounts = 4300.1 km (1.028) yellow - 7 new seamounts = 4189.7 km (1.0023)

Cape Town to Punta Arenas - Melville - Feb, 2011

red - great circle = 6896 kmgreen - 10 new seamounts = 7130 km (1.034) violet - 11 new seamounts = 7069 km (1.025)

Cape Town to Punta Arenas - Melville - Feb, 2011

Cape Town to Punta Arenas - Melville - Feb, 2011

Okeanos Explorer - Monterey Bay to Honolulu - soon Elizabeth Lobecker

Global Edited Soundings for Gravity/Bathymetry Calibration

David Sandwell, Walter Smith, JJ Becker, Karen Marks, Megan Jones, Adrienne Apacile, Seung-Hee Kim, Scott Nelson Rob Beaman, . . .

- Objective construct global bathymetry at 1-10 km resolution for scientific research
- Where does your organization obtain data?

anywhere - focus on single beam soundings

- How do you manage your data? (not very well) What tools and methods do you use to clean and disseminate your data? cm_Editor and www/ftp How do you assess the quality of your data? visual (undergrad students) and statistical How do you describe and document your data? online docs and occasional journal article How do you grid your data? gravity to topography recipe What is your gridding process? high-pass G&T, estimate T/G, add long- λ T, remove/restore Δ T What tools do you use? GMT, ER_Mapper, C-programs, csh, awk, ... How do you evaluate your grid? visual How do you update your grid? regrid globally How do you document your grid development? version number and README
- What are the limitations of the methodologies and tools that you currently use? not portable

• Where do you one your offerte going in the future?	
• Whet issues do you face that complicate your effort?	Improved gravity from Cryosat
• What issues do you face that complicate your effort?	Classified and proprietary data